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Abstract

We consider the spectral approximation of a conservation law in the limit of small or vanishing viscosities. In this
regime, the continuous solution of the problem is known to develop sharp spatial and temporal gradients referred to as
shocks. Also, the standard Fourier–Galerkin solution is known to break down if the mesh parameter is larger than the
shock width. In this paper we propose a new dynamic, multiscale viscosity method which enables the solution of such
systems with relatively coarse discretizations. The key features of this method are: (1) separate viscosities are applied to
the coarse and the fine scale equations; (2) these viscosities are determined as a part of the calculation (dynamically)
from a consistency condition which must be satisfied if the resulting numerical solution is optimal in a user-defined
sense. In this paper we develop these conditions, and demonstrate how they may be used to determine the numerical
viscosities. We apply the proposed method to the one dimensional Burgers equation and note that it yields results that
compare favorably with the vanishing spectral viscosity solution.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we develop a numerical method for the spectral approximation of non-linear conservation
laws. These laws describe a broad range of physical phenomena which include the dynamics of gasses, the
flow of traffic and the propagation of shallow water and non-linear acoustic waves. In all these systems we
are interested in cases when the physical viscosity (or diffusivity) is small or zero. In the small viscosity case,
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the solution to such systems develops local regions of large spatial and temporal gradients called shocks.
The width of a shock reduces with reducing viscosity, and in the limit of zero viscosity the solution becomes
discontinuous. In fact, in this limit in order to ensure unique solutions, the conservation law must be sup-
plemented with an entropy production inequality and conditions that relate jumps in conserved quantities
across the shock [1,2].

For small viscosities, the standard Fourier–Galerkin approximation to non-linear conservation laws be-
comes unstable if the shock width is smaller than the grid size. For a large class of problems the compu-
tational cost of employing a grid which is fine enough to resolve a shock is prohibitive and as a result
this method finds limited application. Further, in the limit of zero viscosity, even with sufficient grid refine-
ment, the Fourier–Galerkin solution does not converge to the unique ‘‘physical’’ solution which satisfies
the entropy production inequality. To overcome these difficulties associated with the Fourier–Galerkin
method, several methods have been proposed. A large proportion of these methods involve appending
to the Fourier–Galerkin formulation a numerical viscosity term (see [3] for example). We choose to classify
different numerical viscosity based methods on the basis of the equations in which the viscosity appears. To
accomplish this, we introduce the concept of the coarse and the fine scale equations of a numerical approx-
imation as follows.

In a Fourier–Galerkin method, the residual of the original partial differential equation is weighted by a
Fourier mode, integrated over the domain, and the result is set to zero. This leads to a finite number of
ordinary differential equations (ODEs), which may then be solved to determine the coefficients in the Fou-
rier expansion of the numerical solution (see [4] for example). Note that in a Galerkin method the same set
of modes is used for the weighting functions and the trial solution. Given a set of modes that comprises the
weighting function space, we select a scalar ~k and label modes with wave numbers k such that jkj < ~k as the
low wave number or the coarse scale modes, and the remaining modes as the high wave number or the fine
scale modes. Then depending on whether an ODE in the numerical approximation is obtained from a
coarse or a fine scale weighting function, we classify it as a coarse or a fine scale equation.

In several popular methods (such as the vanishing viscosity method [5]) that guarantee the convergence
of the numerical solution to the unique entropy solution, the numerical viscosity is applied to both the
coarse and the fine scale equations. On the other hand, in the vanishing spectral viscosity method proposed
by Tadmor [6], the viscosity is applied only to the fine scale equations. As a result, this method retains the
spectral accuracy of the coarse or the large scale modes while guaranteeing convergence to the entropy solu-
tion. It is interesting to note that in the context of the large eddy simulation (LES) of incompressible tur-
bulent flows, the multiscale method of Hughes et al. [7,8], also involves applying a numerical viscosity only
to the fine scale equations.

Motivated by the class of methods where the viscosity appears only in the fine scale equations, we pro-
pose a method where different numerical viscosities appear in the large and the small scale equations. In addi-
tion, in contrast to the methods described above, these viscosities are not determined a priori, instead they
are calculated as part of the solution (dynamically). The equations that are used to determine the viscosities
are derived from the condition that the resulting numerical method be optimal in a certain user-defined
sense. We dub this method the dynamic multiscale viscosity method.

We remark that the equation used to dynamically determine the viscosities, is in effect the variational
counterpart of the Germano identity. This identity has found widespread use in determining model para-
meters in the LES of turbulent flows [9]. Recently, we have demonstrated how it may be used as a tool for
determining unknown parameters in a numerical method aimed at solving an abstract partial differential
equation [10]. The work presented in this paper is an application of this methodology to the spectral
approximation of non-linear conservation laws. In particular we use it to develop the dynamic multiscale
method for a generic non-linear conservation law and then apply it to the model case of one-dimensional
Burgers equation to study its properties. We find that the dynamic multiscale method outperforms the van-
ishing spectral viscosity method.
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An outline of the remainder of this paper is as follows: In Section 2, we present the equations for a gen-
eric non-linear conservation law. In Section 3, we introduce its Fourier–Galerkin approximation. In Section
4, we introduce the multiscale viscosity method. In Section 5, we derive the necessary conditions that ensure
the multiscale viscosity method is optimal in a user-defined sense. We employ these conditions in Section 6
to derive expressions for the multiscale viscosities. This completes the description of the dynamic multiscale
method. In Section 7, we apply the proposed method to the one-dimensional Burgers equation, and com-
pare the results with the Fourier–Galerkin and the spectral vanishing viscosity methods. We end with con-
cluding remarks in Section 8.
2. Problem statement

We represent a generic non-linear conservation law with the following quasi-linear partial differential
equation in the space-time domain Q = X · ]0, T[, where X = [0, 2p] is the spatial domain, and ]0, T[ de-
notes the time period of interest: Given f, G, D and u0, find u : Q ! Rn, such that
u;t þ GðuÞ;x �Du;xx þ f ¼ 0 in Q; ð1Þ
uðx; 0Þ ¼ u0ðxÞ in X. ð2Þ
In the equations above, u,t is the time derivative of u, G : Rn ! Rn is a non-linear vector function of u,
D : Rn ! Rn is an n · n positive semi-definite matrix of viscosities given by D = diag{m1, . . . , mn}, and u0
is the initial condition. The form of Eqs. (1) and (2) is representative of a large class of physical phenomena
that includes the dynamics of gasses, models of traffic flow, non-linear water waves, and processes described
by Burgers equation.

We consider periodic boundary conditions for u expressed as
uð2p; tÞ ¼ uð0; tÞ; t 2 �0; T ½. ð3Þ
For any v : Q ! Rn, we introduce a Fourier-series representation PðaÞv, defined as
PðaÞv ¼
X

06jkj6a

v̂ðk; tÞeikx; ð4Þ
where k is the wave number, and v̂ are the Fourier coefficients given by
v̂ðk; tÞ ¼ 1

2p

Z
X
vðx; tÞe�ikx dx. ð5Þ
It is easily verified that the operator PðaÞ commutes with spatial and temporal differentiation and that
PðaÞPðbÞ ¼ PðbÞPðaÞ ¼ Pðminða;bÞÞ. ð6Þ

We will make use of this property in deriving the consistency conditions for the optimal numerical method
in Section 5.

We are interested in spectral approximation of (1) and (2) for small viscosities (jDj � 1) and in the limit
of vanishing viscosities (jDj ! 0). For small viscosities the solution to these equations is known to exhibit
sharp variations in space and time called shocks. For D = 0 the solution becomes discontinuous and mul-
tivalued. To ensure uniqueness, (1) and (2) must be supplemented with conditions that relate jumps in con-
served quantities across a shock and an entropy production inequality. Another mechanism to arrive at the
same physically relevant solution in this limit is to construct a solution with finite viscosity and then con-
sider the limit jDj ! 0.
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3. Fourier–Galerkin approximation

The Fourier–Galerkin approximation of (1) and (2) is a function u(N)
uðNÞ ¼
X

06jkj6N

ûðk; tÞeikx ð7Þ
such that
PðNÞ½uðNÞ
;t þ GðuNÞ;x �DuN;xx þ f � ¼ 0 in Q; ð8Þ

PðNÞuðNÞðx; 0Þ ¼ PðNÞu0ðxÞ in X. ð9Þ
Noting that PðNÞ commutes with spatial and temporal differentiation, and that PðNÞuðNÞ ¼ uðNÞ, (8) and (9)
may be simplified as
uðNÞ
;t þ PðNÞ½GðuðNÞÞ�

� �
;x
�DuðNÞ

;xx þ PðNÞf ¼ 0 in Q; ð10Þ

uðNÞðx; 0Þ ¼ PðNÞu0ðxÞ in X. ð11Þ
Using (7) in (10) and (11) and invoking the orthogonality of eikx in X, we have
ûðNÞ
;t þ ikĜðuðNÞÞ þ k2DûðNÞ þ f̂ ¼ 0; 0 6 jkj 6 N in �0; T ½; ð12Þ

ûðNÞðk; 0Þ ¼ û0ðkÞ; 0 6 jkj 6 N . ð13Þ
Note that in (12), for notational convenience, we have omitted the explicit dependence of the Fourier coef-
ficients (the hat terms) on k and t.

Eqs. (10)–(13) are both expressions of the Fourier–Galerkin approximation to the original partial differ-
ential equation. We wish to solve these equations in the limit of small or vanishing viscosities when the
mesh size denoted by p/N is much larger than the shock width. In this case, the Fourier–Galerkin is known
to produce large spurious oscillations and become unstable. Further, in the limit D = 0, even with mesh
refinement, that is N! 1, the Fourier–Galerkin solution is known not to converge to ‘‘physical’’ entropy
solution. In order to address these issues, in the following section we propose a multiscale method based on
adding numerical viscosities to the Fourier–Galerkin approximation.
4. Multiscale viscosity method

We augment the Fourier–Galerkin method with multiscale viscosities. The choice of using two distinct
viscosities, one for the coarse scale equations, and another for the fine scale equations is motivated by the
earlier work of several researchers [6–8,11]. The resulting method is given by
uðNÞ
;t þ PðNÞ½GðuðNÞÞ�

� �
;x
� Dþ

�D

N
PðaNÞ þ

�D

N
ðI� PðaNÞÞ

 !
½uðNÞ

;xx � þ PðNÞf ¼ 0 in Q; ð14Þ
where a 2 ]0, 1[ is a real number, I is the identity operator, and �D ¼ diagf�m1; . . . ;�mng and �D ¼ diagf�m1;
. . . ;�mng are matrices of numerical viscosities. The initial condition remains unaltered and is given by
(11). Note that two distinct numerical viscosities, given by �D=N and �D=N , appear in the equations for
the coarse and fine scales, respectively. This is clearly seen once equations for the Fourier coefficients of
u(N) are evaluated. That is, using (7) in (14),
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ûN ;t þ ikĜðuðNÞÞ þ k2 Dþ
�D

N

� �
ûðNÞ þ f̂ ¼ 0; 0 6 jkj 6 aN in �0; T ½; ð15Þ

ûN ;t þ ikĜðuðNÞÞ þ k2 Dþ
�D

N

 !
ûðNÞ þ f̂ ¼ 0; aN < jkj 6 N in �0; T ½. ð16Þ
Since (15) is obtained from coarse scale weighting functions (jkj 6 aN), and (16) is obtained from fine scale
weighting functions we term these equations the coarse and fine scale equations, respectively. As is apparent
from these equations, the numerical viscosity that appears in the coarse and fine scale equations is given by
�D=N and �D=N , respectively.

While the proposed method is motivated by earlier works (see [6–8,11]), there are two crucial differences:

1. In the aforementioned methods the viscosity is applied only to the fine scale equations. The viscosity in
the coarse scale equations is zero. In our method different but non-zero viscosities are applied to both the
coarse and the fine scale equations.

2. In the aforementioned methods the viscosity is determined a priori. In our method the viscosity is deter-
mined as a part of the calculation using an optimality argument. This development is described in the
following section.
5. Consistency conditions

We now derive a set of consistency conditions that are utilized in the next section to compute an explicit
expression for evaluating the numerical viscosities. These conditions are motivated by the Germano iden-
tity, which is commonly used to evaluate parameters in subgrid models for the large eddy simulation of
turbulent flows [9].

The main idea which is expressed in Theorem 5.1 below, is the following. We assume that it is possible to
choose the viscosities in (14) such that the resulting solution is optimal in the sense that its Fourier coeffi-
cients exactly match the corresponding coefficients of the continuous solution. Note that other, user-defined
definitions of an optimal solution are also possible. In addition, we assume that the same viscosities also
yield optimal results for a coarser discretization. That is the solution of (14) with N replaced by M every-
where, where M < N, is also optimal in the manner described above. These assumptions lead to a set of
conditions that must be satisfied by the numerical viscosities in order to yield optimal results. A key feature
of these conditions is that they do not involve the continuous solution u, and are expressed entirely in terms
of the numerical solution uN. Hence they may be utilized with relative ease to determine the numerical
viscosities.

Theorem 5.1. Let u(N) and u(M) be solutions of the multiscale viscosity method with modes up to N and M,

respectively, with M < N. If
uðNÞ ¼ PðNÞu; ð17Þ
uðMÞ ¼ PðMÞu; ð18Þ
where u is the solution of the continuous problem, then
�D
PðaMÞ

M
� PðaNÞ

N

� �
þ �D

I� PðaMÞ

M
� I� PðaNÞ

N

� �� �
½ðPðMÞuðNÞÞ;xx�

¼ PðMÞ½GðPðMÞuðNÞÞ � GðuðNÞÞ�
� �

;x
in Q. ð19Þ
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Proof. u(M) satisfies (14) with N replaced by M everywhere. Further, from (18)
Fig. 1.
uðMÞ ¼ PðMÞu ¼ PðMÞPðNÞu ðfrom (6); and since M < NÞ ¼ PðMÞuðNÞ ðfrom (17)Þ. ð20Þ
Using (20) in (14) written with N replaced by M, and rearranging terms so as to retain only the model term
on the left-hand side, we arrive at
�D

M
PðaMÞ þ

�D

M
ðI� PðaMÞÞ

 !
½ðPðMÞuðNÞÞ;xx�

¼ PðMÞuðNÞ
;t þ PðMÞ½GðPðMÞuðNÞÞ�

� �
;x
�DðPðMÞuðNÞÞ;xx þ PðMÞf in Q. ð21Þ
By applying PðMÞ to (14), assuming that PðMÞ and spatial differentiation commute, using property (17), and
rearranging terms so as to retain only the model term on the left-hand side, we conclude that
�D

N
PðaNÞ þ

�D

N
ðI� PðaNÞÞ

 !
½ðPðMÞuðNÞÞ;xx�

¼ PðMÞuðNÞ
;t þ PðMÞ½GðuðNÞÞ�

� �
;x
�DPðMÞuðNÞ

;xx þ PðMÞf in Q. ð22Þ
Subtracting (22) from (21) we have the desired result (viz. (19)). h
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Remark. The Fourier representation of (19) is given by
Fig. 2
increa
�k2

�D

M
�

�D

N

� �
ðûðNÞÞ; 0 6 jkj 6 aM

�D

M
�

�D

N

 !
ðûðNÞÞ; aM 6 jkj 6 b

�D

M
�

�D

N

 !
ðûðNÞÞ; b 6 jkj 6 M

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼ ik ĜðPðMÞuðNÞÞ � ĜðuðNÞÞ
� �

in �0; T ½; ð23Þ
where
b ¼ minðaN ;MÞ. ð24Þ
6. Evaluation of the viscosity parameters

Eq. (19) (or (23)) represents as many relations as there are modes for which jkj 6M. We wish to evaluate
only the 2n parameters that appear in �D and �D using these relations. One mechanism of reducing (19) to 2n
equations is to equate the L2 inner product of its residual with the linearly independent functions
PðaMÞuðNÞ
j ; j ¼ 1; . . . ; n ð25Þ
and
ðI� PðaMÞÞuðNÞ
j ; j ¼ 1; . . . ; n ð26Þ
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to zero. This procedure leads to 2n scalar equations that are most conveniently expressed in terms of the
Fourier coefficients of u(N). For j = 1, . . . , n they are given by
� �mj
M

� �mj
N

� � X
06jkj6aM

k2jûðNÞ
j j2 ¼

X
06jkj6aM

ûðNÞ�
j ik Ĝj½PðMÞuðNÞ� � Ĝj½uðNÞ�

� �
; ð27Þ

� �mj
M

� �mj
N

� � X
aM<jkj6b

k2jûðNÞ
j j2 � �mj

M
� �mj
N

� � X
b<jkj6M

k2jûðNÞ
j j2

¼
X

aM<jkj6M

ûðNÞ�
j ik Ĝj½PðMÞuðNÞ� � Ĝj½uðNÞ�

� �
; ð28Þ
where the repeated j indices do not imply a summation. These expressions for evaluating the viscosity
parameters are functions of the solution itself. Thus the closed system of Eqs. (14), (11) and (27), (28) com-
prises a numerical method with non-linear (in uN), multiscale viscosities. In implementing this method the
viscosities are evaluated based on the solution obtained from the previous time-step. However once the
numerical viscosity is determined this term is treated implicitly.
7. Numerical example

As an example we apply the proposed method to Burgers equation in one dimension. In this case, in (1)
and (2), n = 1, f = 0, G(u) = u2/2, D = m1 = 5 · 10�5, and u0 = �sinx.

The solution to this problem evolves in two distinct phases. In the first phase (t < p/2), the smooth sine
curve steepens. In wave number space, this corresponds to transfer of energy from the k = 1 mode to higher
wave numbers. This phase culminates in the formation of a shock (or an inverted N-wave) at t � p, whose
approximate width is l = 1.6 · 10�4 units. All the dissipation in the system is concentrated near the shock.
In the wave number space, the formation of the shock corresponds to a 1/k spectrum that extends to the
dissipation wave number, where it steepens. In the second phase, the magnitude of the N-wave reduces as 1/
(1 + t) as the strength of the shock weakens. In wave number space, this corresponds to the lowering of the
entire spectra at the rate of 1/t. These stages of the solution are presented in Figs. 1 and 2, where we have
shown a well-resolved numerical solution of the problem. Note that EðkÞ � jûkj represents the magnitude of
the Fourier coefficients of the solution.

In order to asses the performance of the proposed method we consider the following numerical
solutions:

1. A Fourier–Galerkin solution obtained by solving (10) and (11) or (12) and (13) on a fine grid in which
the shock is resolved. Following terminology used in turbulence modeling we refer to this benchmark
solution as the direct numerical solution (DNS). The number of modes used for computing the DNS
solution is N = 65,536. This corresponds to a mesh size h = 4.79 · 10�5, which is smaller than the shock
width l = 1.6 · 10�4. In Figs. 1 and 2 we have plotted this solution in physical and wave number spaces
at various instances during the interval ]0, 5[.

2. A Fourier–Galerkin solution obtained by solving (10) and (11) or (12) and (13) on a coarse grid with
N = 64. In this case the finest resolved scale (h = 4.9 · 10�2) is much coarser than the scale at which dis-
sipation occurs (l = 1.6 · 10�4).

3. A vanishing spectral viscosity solution on a coarse grid with N = 64. This method is represented by (14),
where �D ¼ �m1 ¼ 0, and �D is non-zero. In particular we choose a = 1/2 and �D ¼ �m1 ¼ 0:25a. This choice
for �m1 is based on the guideline provided in [6].
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4. A dynamic multiscale viscosity solution on a coarse grid with N = 64. This method is given by (14),
where a = 1/2 and the viscosity coefficients are determined using (27) and (28). In calculating these coef-
ficients the solution from the previous time-step is used.
7.1. Comparison

The viscosity parameters of the dynamic multiscale method are chosen such that the method satisfies
conditions that are necessary to ensure that the resulting numerical solution has the same Fourier coeffi-
cients as the continuous solution. This stipulation may be interpreted as a criterion used to design the
numerical method. In the following comparison we assess how close the method comes to achieving this
criterion. We also assess its performance in relation to other methods.

In Figs. 3–6, we have plotted E(k) for the three numerical methods and the truncated DNS solution at
four distinct times. The DNS serves as a benchmark solution. At t = 0.5 we observe that there is little dif-
ference in the numerical methods and the DNS. At t = 1.5, when the shock is about to form differences
appear. A significant pile-up of energy near the cut-off wave number is observed in the coarse Fourier–
Galerkin solution. For the vanishing spectral viscosity solution, this pile-up is reduced. However the solu-
tion is seen to oscillate about the DNS at wave numbers close to the separation between the coarse and fine
scales (k = 32). The multiscale solution has much smaller oscillations at these wave numbers and only
slightly underestimates the spectrum at higher wave numbers. At time t = 2, we observe that the pile-up
at high wave numbers in the Fourier–Galerkin solution has polluted the results at lower wave numbers.
The vanishing spectral viscosity solution continues to be accurate at the lower wave numbers, however
the oscillations close to k = 32 appear to have increased. The dynamic multiscale viscosity solution is accu-
rate at the lower wave numbers. The oscillations near k = 32 persist, however they are less pronounced than
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those for the vanishing spectral viscosity solution. At t = 5 we observe that Galerkin solution is completely
inaccurate, the oscillations in the vanishing spectral viscosity solution have increased and propagated to
lower wave numbers, where as the dynamic multiscale solution has retained its accuracy.

In Fig. 7, we have plotted the viscosity parameters �m1=N and �m1=N for the vanishing spectral viscosity
method and the dynamic multiscale method as a function of time. The coarse scale parameter for the van-
ishing spectral viscosity method is zero and is not shown, whereas the fine scale parameter which is non-
zero and constant is shown. For the dynamic multiscale method we observe that both the coarse and fine
scale parameters are zero till t � 1. This represents the time it takes for the energy to spill out to the wave
numbers near the cut-off wave number. Thus the numerical method (correctly) imposes no viscosity till this
time. Thereafter, the fine scale parameter is seen to rise, and after a while the coarse scale parameter follows
suite. A couple of observations are noteworthy: (1) Unlike the vanishing spectral viscosity method, the vis-
cosity in the coarse scales in the dynamic multiscale method is not zero, thus the method is qualitatively
different. (2) The viscosity in the coarse and the fine scales is active for different periods of time, and also
has different values. In particular, the fine scale viscosity is about 5/3 of the coarse scale value.

Next we compare the accuracy with which the numerical methods predict the decay of kinetic energy
with time. We define the relative error in the resolved kinetic energy as follows:
�keðtÞ ¼
P

jkj664ðû
ð64ÞÞ2 �

P
jkj664ðûÞ

2
� �

P
jkj664ðûÞ

2
� � . ð29Þ
In Fig. 8 we have plotted �ke(t) for all the numerical methods. We observe that at t � 1, that is when the
spectra begins to spill beyond the numerical cut-off wave number, the Fourier–Galerkin solution over-
estimates the kinetic energy. By t � 2.5 its kinetic energy is about two times the actual value. Both the
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vanishing spectral viscosity and the dynamic multiscale methods are much more accurate. In Fig. 9 we have
compared the performance of these two methods. We observe that the vanishing spectral viscosity solution
overestimates the kinetic energy and that the error is seen to increase with time. At t = 5 the total error is
about 2.7%. The multiscale solution underestimates the kinetic energy however the error is less (about 0.2%
at t = 5) and remarkably it does not appear to increase with time.

One of the attractive features of the vanishing spectral viscosity method is that in the limit m ! 0, it con-
verges to the unique solution that satisfies the entropy production inequality, while retaining spectral accu-

racy in the coarse modes. This leads us to consider that while the dynamic multiscale method may be more
accurate in predicting quantities such as the overall spectrum and the resolved kinetic energy, the vanishing
spectral viscosity method may be more accurate in capturing the evolution of the coarse modes since it im-
poses no additional viscosity on these modes. In order to verify this in Fig. 10, we have plotted the error in
the k = 1 mode, scaled by the exact value, as a function of time. That is
�1ðtÞ ¼
ûð64Þð1; tÞ � ûð1; tÞ

jûð1; tÞj . ð30Þ
We consider the DNS solution to be the exact value. We observe that at t � p the error in the coarse Fou-
rier–Galerkin solution rises steeply, whereas the error in the other two methods is smaller. In Fig. 11, we
exclude the Fourier–Galerkin solution. We observe that error the vanishing spectral viscosity solution rises
steadily beyond t � 1. At t = 5 the error is about 1%. The error in the dynamic multiscale method is much
smaller and appears not to increase with time. At t = 5 it is about 0.04%. We have observed similar behav-
ior for other coarse modes (k = 1, . . . , 10). Thus contrary to what might be expected, we observe that
dynamic method (with a non-zero viscosity in the coarse modes) is more accurate than the vanishing spectral

viscosity method in predicting the evolution of the coarse modes. We attribute this observation to the
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hypothesis that the ideal model, which would replicate the effects of the missing scales on the retained scales
exactly, may possess a non-zero viscosity at small wave numbers. We are presently verifying this hypothesis
analytically and numerically.
8. Conclusions

We have proposed a new dynamic multiscale viscosity method for the spectral approximation of conser-
vation laws in the limit of small or vanishing viscosities. Within this method the numerical approximation is
split into coarse and fine scales, and likewise the projected spectral equations are also split into coarse and
fine scale equations. Thereafter different numerical viscosities are applied in the coarse and fine scale equa-
tions. These viscosities are determined using a condition that must be satisfied if the resulting numerical
solution is to be optimal in a user-defined sense.

We have applied this method to the one-dimensional Burgers equation. We have compared the resulting
solution with the Fourier–Galerkin solution and the vanishing spectral viscosity solution computed using
the same number of modes. As a benchmark we have used a well-resolved Fourier–Galerkin solution. In all
comparisons we have found that the dynamic multiscale solution is the most accurate. In addition we have
observed that the relative errors in this solution appear not to grow in time.
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